f(x)=sin(2nx)1+cos2(nx) =sin(2nx)1+1+cos(2nx)2
=2sin(2nx)3+cos(2nx)
Fundamental period of sin(2nx) is 2π2n=πn
Fundamental period of 3+cos(2nx) is 2π2n=πn
Hence, period of f(x) is L.C.M.(πn,πn)=πn
Let us check f(x+π2n)=2sin[2n(π2n+x)]3+cos[2n(π2n+x)]
=−2sin(2nx)3−cos(2nx)≠f(x)
Hence, fundamental period of f(x) is πn.
⇒n=6