If f(x)=tan(x+π6)tanx attains local minimum at x=aπ in the interval (π3,π) and the local minimum value is b, then the value of a+b is
f(x)=tan(x+π6)tanx=2sin(x+π6)cosx2sinxcos(x+π6)=sin(2x+π6)+sinπ6sin(2x+π6)−sinπ6=1+1sin(2x+π6)−sinπ6
f(x) attains local minimum if 2x+π6=3π2 or, x=2π3
and f(2π3)=1−23=13
∴a+b=1