wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=x100100+x9999+x9898++x+1, show that f(1)=100f(0).

Open in App
Solution

f(x)=x100100+x9999+x9898++x+1
Differentiate w.r.t x __
f(x)=100×1100x1001+9999x991+1×x11+0.
{since(xn)1=ddx(xn)=nxn1}
=x99+x98+x97+x0
f(x)=x99+x98+x97++.1
L.H.S. f(1)=199+198++1=
= 1+1+ ---- up to 100 terms.
=100×1=100
R.H.S 100f(0)=100(099+098++1).
=100×1=100
So L.H.S = R.H.S. Hence proved.

1192117_1292170_ans_3219e67abc214b19b79272ff5ee0692a.jpg

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon