wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=x+22x+3, then (f(x)x2)1/2dx=12g(1+2f(x)12f(x))23h(3f(x)+23f(x)2)+c, where

A
g(x)=tan1x,h(x)=log|x|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
g(x)=log|x|,h(x)=tan1x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
g(x)=h(x)=tan1x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
g(x)=log|x|,h(x)=log|x|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D g(x)=tan1x,h(x)=log|x|
I=x+2x2x+3dx

Substitute u=2x+3dx=2x+3du, use 1x=2u23,x=u232:

=2u2+1u23du

Perform u=tan(v)v=tan1u,du=sec2vdv:

sec2(v)tan2(v)+1tan2(v)3dv

Simplify using tan2(v)+1=sec2(v):

=sec3(v)tan2(v)3dv

=cos(v)(1(sin2(v)1)(4sin2(v)3))dv

Substitute w=sin(v)dv=1cos(v)dw:

=1(w21)(4w23)dw

Factor the denominator and perform partial fraction decomposition:
=(44w2312(w+1)+12(w1))dw

=(414w23dw121w+1dw+121w1dw) ........(i)

Now, 14w23dw=1(2w3)(2w+3)dw

Perform partial fraction decomposition:

=⎜ ⎜12.3(2w3)12.3(2w+3)⎟ ⎟dw

=12.312w3dw12.312w+3dw

=ln(2w3)4.3ln(2w+3)4.3

So, 414w23dw121w+1dw+121w1dw

=ln(2w3)3+ln(2w+3)3ln(w+1)2+ln(w1)2

Plug in solved integrals:

1(w21)(4w23)dw

=ln(2w3)3ln(2w+3)3+ln(w+1)2ln(w1)2

Undo substitution w=sin(v):

=ln(2sin(v)3)3ln(2sin(v)+3)3+ln(sin(v)+1)2ln(sin(v)1)2

Undo substitution v=tan1(u), use sin(tan1(u))=uu2+1:

=ln(2uu2+13)3ln(2uu2+1+3)3+ln(uu2+1+1)2ln(uu2+11)2

Plug in solved integrals:

2u2+1u23du

=23ln(2uu2+13)23ln(2uu2+1+3)+ln(uu2+1+1)2ln(uu2+11)2

Undo substitution u=2x+3uu2+1=(2x+3)(2x+4)=12f(x)

=23ln(2f(x)3)23ln(2f(x)+3)+ln(12f(x)+1)2ln(12f(x)1)2

Now, taking LCM inside log function and then using lnAlnB=ln(AB):

we get, I=12ln(1+2f(x)12f(x))23ln(3f(x)+23f(x)2)+c

So, g(x)=ln|x|,h(x)=ln|x|

Hence, option (D) is correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon