The correct option is
D g(x)=tan−1x,h(x)=log|x|I=∫√x+2x√2x+3dx
Substitute u=√2x+3⇒dx=√2x+3du, use 1x=2u2−3,x=u2−32:
=∫√2√u2+1u2−3du
Perform u=tan(v)⇒v=tan−1u,du=sec2vdv:
∫sec2(v)√tan2(v)+1tan2(v)−3dv
Simplify using tan2(v)+1=sec2(v):
=∫sec3(v)tan2(v)−3dv
=∫cos(v)(−1(sin2(v)−1)(4sin2(v)−3))dv
Substitute w=sin(v)⇒dv=1cos(v)dw:
=−∫1(w2−1)(4w2−3)dw
Factor the denominator and perform partial fraction decomposition:
=−∫(−44w2−3−12(w+1)+12(w−1))dw
=−(−4∫14w2−3dw−12∫1w+1dw+12∫1w−1dw) ........(i)
Now, ∫14w2−3dw=∫1(2w−√3)(2w+√3)dw
Perform partial fraction decomposition:
=∫⎛⎜
⎜⎝12.√3(2w−√3)−12.√3(2w+√3)⎞⎟
⎟⎠dw
=12.√3∫12w−√3dw−12.√3∫12w+√3dw
=ln(2w−√3)4.√3−ln(2w+√3)4.√3
So, −4∫14w2−3dw−12∫1w+1dw+12∫1w−1dw→
=−ln(2w−√3)√3+ln(2w+√3)√3−ln(w+1)2+ln(w−1)2
Plug in solved integrals:
−∫1(w2−1)(4w2−3)dw
=ln(2w−√3)√3−ln(2w+√3)√3+ln(w+1)2−ln(w−1)2
Undo substitution w=sin(v):
=ln(2sin(v)−√3)√3−ln(2sin(v)+√3)√3+ln(sin(v)+1)2−ln(sin(v)−1)2
Undo substitution v=tan−1(u), use sin(tan−1(u))=u√u2+1:
=ln(2u√u2+1−√3)√3−ln(2u√u2+1+√3)√3+ln(u√u2+1+1)2−ln(u√u2+1−1)2
Plug in solved integrals:
√2∫√u2+1u2−3du
=√23ln(2u√u2+1−√3)−√23ln(2u√u2+1+√3)+ln(u√u2+1+1)√2−ln(u√u2+1−1)√2
Undo substitution u=√2x+3⇒uu2+1=√(2x+3)(2x+4)=1√2f(x)
=√23ln(√2f(x)−√3)−√23ln(√2f(x)+√3)+ln(1√2f(x)+1)√2−ln(1√2f(x)−1)√2
Now, taking LCM inside log function and then using lnA−lnB=ln(AB):
we get, I=1√2ln(1+√2f(x)1−√2f(x))−√23ln(√3f(x)+√2√3f(x)−√2)+c
So, g(x)=ln|x|,h(x)=ln|x|
Hence, option (D) is correct.