The correct option is B f(x) is an increasing function
We have f(x) =xsinx and g(x) =xtanx
∴f′(x)=sinx−xcosxsin2x and
g′(x)=tanx−xsec2xtan2x
Let Φ(x0)=sinx−xcosx and Ψ(x)=tanx−xsec2x
Then, f'(x) = Φ(x)/sin2x and g′(x)=Ψ(x)/tan2
Now, Φ(x)=cosx−cosx+xsinx=xsinx
and Ψ(x)=sec2x−sec2x−2xsec2xtanx=−2xsec2xtanx
For 0<x≤1, we have x > 0 , sin x >0, tan x >0, sec x >0
∴Φ(x)=xsinx>x and Ψ(x(<0 for 0<x≤1
⇒Φ(x) is increasing on (0,1) and Ψ(x) is decreasing on (0,1)
⇒Φ(x)>Phi(0) and Ψ(x)<Ψ(0)⇒Φ(x)>0 and Ψ(x)<0
∴f(x)=Φ(x)/sin2x>0 & g(x) = Φ(x)/tan2x<0
⇒ f(x) is increasing on (0,1) and g(x) is decreasing on (0,1)