Given, f(x)=x√1−x2,g(x)=x√1+x2
Therefore, f(g(x))=g(x)√1−{g(x)}2
⇒f(g(x))=x√1+x2 ⎷1−(x√1+x2)2⇒f(g(x))=x√1+x2√1+x2−x21+x2
⇒f(g(x))=x
If f(x)=√x+3 and g(x)=1+x2, then fog(x)= ____.