If f(x)=⎧⎨⎩|x|+1,x<00,x=0x3|x|−1x>0 For what value (s) of a does limx→af(x) exists?
Open in App
Solution
The given function is f(x)=⎧⎨⎩|x|+1,x<00,x=0x3|x|−1x>0 When a=0 limx→a−f(x)=limx→a−(|x|+1) = limx→0(−x+1)[Ifx<0,|x|=−x] =−0+1 =1 limx→a−f(x)=limx→a+(|x|−1) = limx→0(x−1)[Ifx<0,|x|=x] =0−1 =−1 Here it is observed that limx→af(x)≠limx→a+f(x) ∴limx→0f(x) does not exist When a<0 limx→a−f(x)=limx→a−(|x|+1) = limx→a(−x+1)[x<a<0⇒|x|=−x] =−a+1 limx→a+f(x)=limx→a+(|x|+1) limx→a(−x+1)[a<x<0⇒|x|=−x] =−a+1 ∴limx→a−f(x)=limx→a+f(x)=−a+1
Thus limit of f(x) exists at x=a where a<0 When a>0 limx→a−f(x)=limx→a−(|x|−1) = limx→a(x−1)[0<x<a⇒|x|=x] =a−1 limx→a+f(x)=limx→a+(|x|−1) = limx→a(x−1)[0<a<x⇒|x|=x] =a−1 ∴limx→a−f(x)=limx→a+f(x)=a−1 Thus limit of f(x) exists at x=a where a>0 Thus limx→af(x) exists for all a≠0⋅