wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=mx2+n,x<0nx+m,0x1nx3+m,x>1. For what integers m and n does limx0f(x) and limx1f(x) exist?

Open in App
Solution

The given function is
f(x)=mx2+n,x<0nx+m,0x1nx3+m,x>1
limx0f(x) = limx0(mx2+n)
=m(0)2+n=n
limx0+f(x)=limx0(nx+m)
=n(0)+m=m
Thus limx0f(x) exists if m=n
limx1f(x)=limx1(nx+m)
=n(1)+m=m+n
limx1+f(x)=limx1(nx3+m)
=n(1)3+m
=m+n
limx1f(x)=limx1+f(x)=limx1f(x)
Thus limx1f(x) exists for any integral value of m and n

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems for Differentiability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon