The given function is
f(x)=⎧⎨⎩mx2+n,x<0nx+m,0≤x≤1nx3+m,x>1
limx→0−f(x) = limx→0(mx2+n)
=m(0)2+n=n
limx→0+f(x)=limx→0(nx+m)
=n(0)+m=m
Thus limx→0f(x) exists if m=n
limx→1−f(x)=limx→1(nx+m)
=n(1)+m=m+n
limx→1+f(x)=limx→1(nx3+m)
=n(1)3+m
=m+n
∴limx→1−f(x)=limx→1+f(x)=limx→1f(x)
Thus limx→1f(x) exists for any integral value of m and n