∫π/20f(x)dx=∣∣
∣
∣
∣
∣∣∫π/20sin5xdx∫π/20lnsinxdx∫π/20√sinx√sinx+√cosxdxn∑nk=1k∏nk=1k815π2ln(12)π4∣∣
∣
∣
∣
∣∣
By Walli's formula,
∫π/20sin5xdx=45⋅23=815
Let I=∫π/20lnsinxdx
=∫π/20lncosxdx
2I=∫π/20ln(sin2x2)dx
2I=∫π/20lnsin2xdx−∫π/20ln2dx
Put 2x=t
⇒xdx=12dt
2I=12∫π0lnsintdt−π2ln2
2I=122∫π/20lnsintdt−π2ln2
2I=I−π2ln2
⇒I=−π2ln2
Let I=∫π/20√sinx√sinx+√cosxdx
I=∫π/20√cosx√sinx+√cosxdx
2I=∫π/201dx
⇒I=π4
=∣∣
∣
∣
∣∣45⋅23−π2ln2π4n∑nk=1k∏nk=1k815π2ln(12)π4∣∣
∣
∣
∣∣
=∣∣
∣
∣
∣∣815π2ln(12)π4n∑nk=1k∏nk=1k815π2ln(12)π4∣∣
∣
∣
∣∣
=0 (since R1 and R3 are identical)