wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=∣ ∣ ∣ ∣sin5xlnsinxsinxsinx+cosxnnk=1knk=1k815π2ln(12)π4∣ ∣ ∣ ∣ Then find the value of π/20f(x)dx

Open in App
Solution

π/20f(x)dx=∣ ∣ ∣ ∣ ∣π/20sin5xdxπ/20lnsinxdxπ/20sinxsinx+cosxdxnnk=1knk=1k815π2ln(12)π4∣ ∣ ∣ ∣ ∣
By Walli's formula,
π/20sin5xdx=4523=815
Let I=π/20lnsinxdx
=π/20lncosxdx
2I=π/20ln(sin2x2)dx
2I=π/20lnsin2xdxπ/20ln2dx
Put 2x=t
xdx=12dt
2I=12π0lnsintdtπ2ln2
2I=122π/20lnsintdtπ2ln2
2I=Iπ2ln2
I=π2ln2
Let I=π/20sinxsinx+cosxdx
I=π/20cosxsinx+cosxdx
2I=π/201dx
I=π4
=∣ ∣ ∣ ∣4523π2ln2π4nnk=1knk=1k815π2ln(12)π4∣ ∣ ∣ ∣
=∣ ∣ ∣ ∣815π2ln(12)π4nnk=1knk=1k815π2ln(12)π4∣ ∣ ∣ ∣
=0 (since R1 and R3 are identical)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon