Given,
f(x)=axax+√x .....(i)
Now, f(1−x)=a1−xa1−x+√a=√a√a+ax ...(ii)
From Eqs. (i) and (ii); we have f(x)=f(1−x)=1 ...(iii)
⇒f(r2n)+f(2n−r2n)=1
⇒2n−1∑r=1f(r2n)+2n−1∑r=1f(2n−r2n)=2n−1
⇒2n−1∑r=1f(r2n)+2n−1∑t=1f(t2n)=2n−1 (putting 2n−r=t)
Hence, 22n−1∑r=1f(r2n)=2n−1=2(8)−1=15.............. at n=8