If f(x)=ex1+ex ,I1=∫f(a)f(−a)xg{x(1−x)}dx and I2=∫f(a)f(−a)g{x(1−x)}dx, then the value I2I1 is
A
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
-3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
-1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 2 f(x)=ex1+ex⇒f(−a)+f(a)=ea1+ea+e−a1+e−a=1 Let I1=∫f(a)f(−a)xg(x(1−x))dx.....(1) Using property ∫baf(x)dx=∫baf(a+b−x)dx I1=∫f(a)f(−a)(f(−a)+f(a)−x)g((f(−a)+f(a)−x)(1−(f(−a)+f(a)−x)))dx =∫f(a)f(−a)(1−x)g((1−x)x)dx ...(2) Adding (1) and (2), we get 2I1=∫f(a)f(−a)g((1−x)x)dx=I2⇒I2I1=2