If f(x)=sin2x+4sinx+52sin2x+8sinx+8, then :
f(x)=sin2x+4sinx+52sin2x+8sinx+8,
⇒f(x)=(sinx+2)2+12(sinx+2)2
=12+12(sinx+2)2
Since, −1≤sinx≤1
⇒1≤(sinx+2)2≤9
⇒118≤12(sinx+2)2≤12
⇒12+118≤12+12(sinx+2)2≤12+12
⇒59≤f(x)≤1
If f(x)=1+cos2x+8sin2xsin 2x. Then the minimum value of f(x) is