If f(x)=sinx+bcosxsinx+4cosx is monotonic increasing, then-
We know that f(x)=asinx+bcosxcsinx+dcosx It will be monotonic increasing when ad−bc>0 Given f(x)=sinx+bcosxsinx+4cosx is monotonic increasing So, 4−b>0 ⇒b<4
limx→π4cos x−sin x(π4−x)(cos x+sin x)