1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Property 1
If fx = ∫0s...
Question
If
f
(
x
)
=
∫
sin
2
x
0
sin
−
1
√
t
d
t
+
∫
cos
2
x
0
cos
−
1
√
t
d
t
,
x
∈
[
0
,
π
2
]
, then
f
(
x
)
is equal to
A
f
(
x
)
=
π
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f
(
x
)
=
π
8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f
(
x
)
=
π
4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f
(
x
)
=
π
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
f
(
x
)
=
π
4
We have,
f
(
x
)
=
∫
sin
2
x
0
sin
−
1
√
t
d
t
+
∫
cos
2
x
0
cos
−
1
√
t
d
t
Put
t
=
sin
2
θ
in
1
s
t
integral
so,
t
→
0
⇒
θ
→
0
and
t
→
s
i
n
2
x
⇒
θ
→
x
and
t
=
cos
2
ϕ
in the second integral,
then
So,
t
→
0
⇒
ϕ
→
π
2
and
t
→
s
i
n
2
x
⇒
ϕ
→
x
f
(
x
)
=
∫
x
0
θ
sin
2
θ
d
θ
−
∫
x
π
2
ϕ
sin
2
ϕ
d
ϕ
f
(
x
)
=
∫
x
0
θ
sin
2
θ
d
θ
+
∫
π
2
x
θ
sin
2
θ
d
θ
f
(
x
)
=
∫
π
2
0
θ
sin
2
θ
d
θ
=
π
4
(Using Integration by Parts).
Suggest Corrections
0
Similar questions
Q.
Let
f
(
x
)
=
∫
sin
2
x
0
sin
−
1
(
√
t
)
d
t
+
∫
cos
2
x
0
cos
−
1
(
√
t
)
d
t
, then
Q.
Verify Rolle's theorem for each of the following functions on the indicated intervals
(i) f(x) = cos 2 (x − π/4) on [0, π/2]
(ii) f(x) = sin 2x on [0, π/2]
(iii) f(x) = cos 2x on [−π/4, π/4]
(iv) f(x) = e
x
sin x on [0, π]
(v) f(x) = e
x
cos x on [−π/2, π/2]
(vi) f(x) = cos 2x on [0, π]
(vii) f(x) =
sin
x
e
x
on 0 ≤ x ≤ π
(viii) f(x) = sin 3x on [0, π]
(ix) f(x) =
e
1
-
x
2
on [−1, 1]
(x) f(x) = log (x
2
+ 2) − log 3 on [−1, 1]
(xi) f(x) = sin x + cos x on [0, π/2]
(xii) f(x) = 2 sin x + sin 2x on [0, π]
(xiii)
f
x
=
x
2
-
sin
π
x
6
on
[
-
1
,
0
]
(xiv)
f
x
=
6
x
π
-
4
sin
2
x
on
[
0
,
π
/
6
]
(xv) f(x) = 4
sin
x
on [0, π]
(xvi) f(x) = x
2
− 5x + 4 on [1, 4]
(xvii) f(x) = sin
4
x + cos
4
x on
0
,
π
2
(xviii) f(x) = sin x − sin 2x on [0, π]