If f(x)=∫2sin6x−5sin4x+10sin2x2cos5x−3cos3x+7cosxdx,f(0)=1, then which of the following option(s) is/are correct ?
A
f(x)+f′(x)+1=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f(x)+f′′(x)=3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
fmax=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
fmin=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dfmin=1 Let I=∫2sin6x−5sin4x+10sin2x2cos5x−3cos3x+7cosxdx=∫(2sin6x−2sin4x)−(3sin4x−3sin2x)+7sin2x2cos5x−3cos3x+7cosxdx=∫4(cos5xsinx)−6cos3xsinx+7(2sinxcosx)2cos5x−3cos3x+7cosxdx=∫2sinx(2cos5x−3cos3x+7cosx)2cos5x−3cos3x+7cosxdx=∫2sinxdx=−2cosx+C ⇒f(x)=−2cosx+C
As, f(0)=1,C=3 ⇒f(x)=3−2cosx
and f′(x)=2sinx, f′′(x)=2cosx⇒f(x)+f′′(x)=3
Also, fmax=5,fmin=1