wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=2sin6x5sin4x+10sin2x2cos5x3cos3x+7cosxdx,f(0)=1, then which of the following option(s) is/are correct ?

A
f(x)+f(x)+1=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f(x)+f′′(x)=3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
fmax=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
fmin=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D fmin=1
Let
I=2sin6x5sin4x+10sin2x2cos5x3cos3x+7cosxdx=(2sin6x2sin4x)(3sin4x3sin2x)+7sin2x2cos5x3cos3x+7cosxdx=4(cos5xsinx)6cos3xsinx+7(2sinxcosx)2cos5x3cos3x+7cosxdx=2sinx(2cos5x3cos3x+7cosx)2cos5x3cos3x+7cosxdx=2sinxdx=2cosx+C
f(x)=2cosx+C
As, f(0)=1,C=3
f(x)=32cosx
and f(x)=2sinx,
f′′(x)=2cosxf(x)+f′′(x)=3
Also, fmax=5,fmin=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon