If f(x)=∫2x5+5x4(4+2x+3x5)2dx,(x≥0) and f(0)=0, then the value of 72⋅f(1) is
Open in App
Solution
Given : f(x)=∫2x5+5x4(4+2x+3x5)2dx
Taking x10 common from numerator and denominator, we get f(x)=∫2x−5+5x−6(4x−5+2x−4+3)2dx
Taking 4x−5+2x−4+3=z ⇒(−20x−6−8x−5)dx=dz⇒f(z)=−14∫dzz2=14z+C⇒f(x)=x54(3x5+2x+4)+C
As f(0)=0⇒C=0
So, 72⋅f(1)=72×136=2