f(x)=∫dxtanx+secx+cotx+ cosec x⇒f(x)=∫sinxcosx dx1+sinx+cosx⇒f(x)=∫sinx dxsecx+tanx+1
Multiplying and dividing by 1+tanx−secx
⇒f(x)=∫sinx(1+tanx−secx) dx(1+tanx)2−sec2x⇒f(x)=∫sinx(1+tanx−secx) dx2tanx⇒f(x)=12∫cosx+sinx−1 dx⇒f(x)=12[sinx−cosx−x]+c⇒f(0)=c−12=52⇒c=3
Therefore,
f(π)=12[0+1−π]+3⇒f(π)=7−π2
Hence, [f(π)]=1