wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=dxtanx+secx+cotx+ cosec x and f(0)=52, then [f(π)] is equal to
(where [.] represents greatest integer function)

Open in App
Solution

f(x)=dxtanx+secx+cotx+ cosec xf(x)=sinxcosx dx1+sinx+cosxf(x)=sinx dxsecx+tanx+1
Multiplying and dividing by 1+tanxsecx
f(x)=sinx(1+tanxsecx) dx(1+tanx)2sec2xf(x)=sinx(1+tanxsecx) dx2tanxf(x)=12cosx+sinx1 dxf(x)=12[sinxcosxx]+cf(0)=c12=52c=3
Therefore,
f(π)=12[0+1π]+3f(π)=7π2
Hence, [f(π)]=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon