The correct option is C x=−1,1 only
f(x)=limn→∞log(2+x)−x2nsinx1+x2n
If |x|<1,x2n→0, as n→∞
If |x|>1,x−2n→0, as n→∞
f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩log(2+x);|x|<1−sinx;|x|>1log3−sin12;x=1sin12;x=−1
Clearly f(1−)≠f(1+)≠f(1) and f(1−)≠f(−1+)≠f(−1)
∴f(x) is discontinuous at x=±1 only.