f(x)=tan−1(2k2+k2+k4)
=tan−1(2k1+(k4+1+2k2−k2))
=tan−1(2k1+(k2+1)2−k2)
=tan−1((k2+1+k)−(k2+1−k)1+(k2+1+k)(k2+1−k))
∴f(x)=x∑k=1tan−1(k2+1+k)−tan−1(k2+1−k)
Putting the values of k, we get
f(x)=tan−1(3)−tan−1(1)+tan−1(7)−tan−1(3)+⋯ +tan−1(x2+x+1)−tan−1(x2−x+1)
⇒f(x)=tan−1(x2+x+1)−tan−1(1)
Differentiating both sides w.r.t. x,
f′(x)=11+(x2+x+1)2×(2x+1)
∴f′(0)=12
Hence, 6f′(0)=3