wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=xk=1tan1(2k2+k2+k4), then the value of 6f(0) is

Open in App
Solution

f(x)=tan1(2k2+k2+k4)
=tan1(2k1+(k4+1+2k2k2))
=tan1(2k1+(k2+1)2k2)
=tan1((k2+1+k)(k2+1k)1+(k2+1+k)(k2+1k))

f(x)=xk=1tan1(k2+1+k)tan1(k2+1k)

Putting the values of k, we get
f(x)=tan1(3)tan1(1)+tan1(7)tan1(3)+ +tan1(x2+x+1)tan1(x2x+1)
f(x)=tan1(x2+x+1)tan1(1)
Differentiating both sides w.r.t. x,
f(x)=11+(x2+x+1)2×(2x+1)
f(0)=12
Hence, 6f(0)=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Improper Integrals
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon