The correct option is D f(x)=80x2+180x119
f(x)=x+x∫01y2f(y)dy+x2∫10yf(y)dy
=x(1+∫10y2f(y)dy)+x2(∫10yf(y)dy)⇒f(x) is a quadratic expression of the form (ax+bx2)
where a=1+∫10y2f(y)dy
a=1+∫10y2(ay+by2)dy
a=1+a4+b5
⇒15a−4b=20....(i)
and b=∫10yf(y)dy=∫10y(ay+by2)dy
b=a3+b4⇒9b−4a=0....(ii)
from (i) and (ii)
a=180119,b=80119 so
f(x)=80x2+180x119