The correct option is A loge2
To solve integral of the form ∫dxa+b cosx+c sinx, we write sinx and cosx in terms of tanx2,and then substitute t=tanx2.
Now, putting sinx=2tanx21+tan2x2 and cosx=1−tan2x21+tan2x2.
We have:
I=∫dx1+sinx+cosx =∫dx1+2tanx21+tan2x2+1−tan2x21+tan2x2=∫(1+tan2x2)dx1+tan2x2+2tanx2+1−tan2x2=∫sec2x2dx2+2tanx2Now, susbtituting t= tanx2,we get dt=12sec2x2dxThus, our integral becomes:I=∫2dt2(1+t)⇒I=∫dt(1+t)=ln(1+t|+CSubstituting back t=tanx2, we getI=ln(1+tanx2∣∣+C=F(x)Also, F(0)=0⇒ln(1+tan0|+C=0⇒ln(1|+C=0⇒C=0Thus, F(x)=ln(1+tanx2∣∣Also, F(π2)=ln(1+tanπ4∣∣=ln(2|=loge2