If f′(x) exists for all x∈R and g(x)=f(x)−(f(x))2+(f(x))3 for all x∈R , then
Let g(x)=∫x0f(t)dt and f(x) satisfies the equation f(x+y)=f(x)+f(y)+2xy−1 for all x, yϵR and f′(0)=2 then