The correct option is B 5−e3−e
Differentiating the given expression, we get f′′(x)=f′(x)
⇒∫df′(x)f′(x)=∫dx⇒ln|f′(x)|=x+c⇒f′(x)=±Aex⋯(i)
(where A=ec)
⇒∫f′(x)dx=∫(±Aex)dx⇒f(x)=±Aex+B⋯(ii)
Now, f(0)=1⇒±A+B=1
Case 1: taking the positive sign,
∴f′(x)=f(x)+1∫0(Aex+B)dx
Aex=(Aex+1−A)+[Aex+(1−A)x]10
⇒1−A+(Ae+1−A−A)=0
⇒A(e−3)=−2
⇒A=23−e and B=1−23−e=1−e3−e
∴f(loge2)=2A+B=43−e+1−e3−e=5−e3−e
Case 2: taking negative sign in f(x)=±Aex+B
∴f′(x)=f(x)+1∫0(−Aex+B)dx
−Aex=(−Aex+1+A)+[−Aex+(1+A)x]10
⇒1+A+(−Ae+1+A+A)=0
⇒A(3−e)=−2
⇒A=−23−e and B=1+−23−e=1−e3−e
∴f(loge2)=−2A+B=43−e+1−e3−e=5−e3−e
Thus from Case 1 and 2,
f(loge2)=5−e3−e