wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=f(x)+10f(x)dx and f(0)=1, then the value of f(loge2) is

A
13+e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5e3e
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2+ee2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 5e3e
Differentiating the given expression, we get f′′(x)=f(x)
df(x)f(x)=dxln|f(x)|=x+cf(x)=±Aex(i)
(where A=ec)
f(x)dx=(±Aex)dxf(x)=±Aex+B(ii)
Now, f(0)=1±A+B=1
Case 1: taking the positive sign,
f(x)=f(x)+10(Aex+B)dx
Aex=(Aex+1A)+[Aex+(1A)x]10
1A+(Ae+1AA)=0
A(e3)=2
A=23e and B=123e=1e3e
f(loge2)=2A+B=43e+1e3e=5e3e
Case 2: taking negative sign in f(x)=±Aex+B
f(x)=f(x)+10(Aex+B)dx
Aex=(Aex+1+A)+[Aex+(1+A)x]10
1+A+(Ae+1+A+A)=0
A(3e)=2
A=23e and B=1+23e=1e3e
f(loge2)=2A+B=43e+1e3e=5e3e
Thus from Case 1 and 2,
f(loge2)=5e3e

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon