If f(x)=11−x, show that f[f{f(x)}]=x.
We have, f(x)=11−x Now, f{f(x)}=f{11−x} =11−11−x =11−x−11−x =1−x−x =x−1x ∴f[f{x}]=f{x−1x} =11−{x−1x} =1x−x+1x =x1 =x ∴f[f(x)]=x Hence, proved.
If f(x)=x−1x+1, x≠−1 then show that f(f(x))=−1x, where x≠0).