Consider the given function
f(x)=1−√3tanxπ−6x for x≠π6
Then, we have
For R.H.L
limx→π6−f(x)=limx→π6−1−√3tanxπ−6x
=1−√3tanπ6π−6×π6=0
For L.H.L
limx→π6+f(x)=limx→π6+1−√3tanxπ−6x
=1−√3tanπ6π−6×π6=0
And
At π6
limx→π6f(x)=limx→π61−√3tanxπ−6x
=1−√3tanπ6π−6×π6=0
Then,
limx→π6−f(x)=limx→π6+f(x)=limx→π6f(x)
Hence, this function is continuous at x=π6