Iff(x)=α xx+1, x ≠−1 then , for what value of α is f(f(x))=x
1
-1
f(f(x))=α f(x)f(x)+1=α(azz+1)(azz+1+1)=α2.xax+x+1
∴=α2.x(α+x) Or x((α+1)x+1−α2)=0
Or (α+1)x2+(1−α2)x=0.This should hold for all x
⇒α+1=0,1−α2=0,∴α=−1
Let f(x)=αxx+1,x≠−1. Then write the value of α satisfying f(f(x))=x for all x≠−1.