If f(x)=axx+1,x≠−1 . then, for what value of a is f(f(x)) = x
f(f(x))=af(x)f(x)+1=a(azz+1)(azz+1+1)=a2.xax+x+1 ∴x=a2.x(a+x)x+1 or x((a+1)x+1−a2)=0 Or (a+1)x2+(1−a2)x=0. This should hold for all x. ⇒a+1=0,1−a2=0, ∴a=−1.
Let f(x)=αxx+1,x≠−1. Then write the value of α satisfying f(f(x))=x for all x≠−1.
Iff(x)=α xx+1, x ≠−1 then , for what value of α is f(f(x))=x
If x = √2+√1, then the value of [x+1x] is ?