If f(x)=cos2x+sin4xcos4x+sin2x for all real x, then f(2016) =
1
2
3
4
f(x)=cos4x+(1−cos2x)2cos4x+(1−cos2x)=cos4x−cos2x+1cos4x−cos2x+1=1
∴f(2016)=1
If f(x)=sin4 x+cos2 xsin2 x+cos4 x for xϵR, then f(2002).