If f(x)=ex1+ex,I1=∫f(a)f(−a)xg{x(1−x)}dx, and I2=∫f(a)f(−a)g{x(1−x)}dx, then the value of I2I1 [AIEEE 2004]
Given, f(x)=exx+1,I1=∫f(a)f(−a)xg{x(1−x)}dx
and I2=∫f(a)f(−a)g{x(1−x)}dx
f(a)=ea1+ea,f(−a)=e−a1+e−a
∴f(a)+f(−a)=1
Now, 2I1=∫f(a)f(−a){f(a)+f(−a)−x}g{(1−x)(x)}dx
⇒2I1=I2⇒I2I1=2