If f(x)=ex1+ex,I1=∫f(a)f(−a)xg{x(1−x)}dxandI2=∫f(a)f(−a)g{x(1−x)}dx, then the value of I2I1is
A
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
-1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
-3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 2 f(−a)=e−a1+e−a=1ex+1,f(a)=ea1+ea⇒f(a)+f(−a)=1 I1=∫f(a)f(−a)xg{x(1−x)}dx=∫f(a)f(−a)[f(a)+f(−a)−x]g{[f(a)+f(−a)−x}{1−f(a)−f(−a)+x}]dx =∫f(a)f(−a)(1−x)g[(1−x)x]dx=∫f(a)f(−a)g{x(1−x)}dx−∫f(a)f(−a)xg[x(1−x)]dx=I2−I1 ⇒2I1=I2⇒I2I1=2