If f(x)=x+1x−1, show that f[f(x)]=x.
We have, If f(x)=x+1x−1,x≠1
Now, f[f(x)]=f(x)+1f(x)−1
⇒f[f(x)]=x+1x−1+1x+1x−1−1
⇒f[f(x)]=x+1+x−1x+1−x+1
⇒f[f(x)]=2x2=x
Hence f[f(x)]=x