If f(x)=x−1x+1, x≠−1 then show that f(f(x))=−1x, where x≠0).
We have, f(x)=x−1x+1, where x≠−1.
∴f{f(x)}=f(x−1x+1)={x−1x+1−1}{x−1x+1+1}
={(x−1)−(x+1)}(x+1)×(x+1){(x−1)+(x+1)}=−22x=−1x.
Hence, f{f(x)}=−1x, where x≠0.
If f(x)=11−x, show that f[f{f(x)}]=x.