If f(x)=x−42√x, then f′(1) is
=12√x−2√x
=12x12−2x−12
Differentiating both sides with respect to x, we get
f′(x)=12×12x12−1−2×(−12)x−12−1 [∵f(x)=xn⇒f′(x)=nxn−1]
⇒f′(x)=14x−12+x−32
=14√x+1x√x
=x+44x√x
∴f′(1)=1+44×1√1=1+44=54
Hence, the correct answer is option A.