If f(x),g(x) are two differentiable functions on [0,2] satisfying f′′(x)=g′′(x),f′(1)=2g′(1)=4 and f(2)=3g(2)=9, then
A
f(4)−g(4)=10
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
|f(x)−g(x)|<2 if −2<x<0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
f(x)−g(x)=2x has real roots
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f(2)=g(2) if x=−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Af(4)−g(4)=10 B|f(x)−g(x)|<2 if −2<x<0 Df(2)=g(2) if x=−1 We have f′′(x)=g′′(x).On integration, we get f′(x)=g′(x)+C Putting x=1, we get f′(1)=g′(1)+C 4=2+C C=2 f′(x)=g′(x)+2......(1) Integrating w.r.t. x we get f(x)=g(x)+2x+c Putting x=2 f(2)=g(2)+4+c 9=3+4+c c=2 f(x)=g(x)+2x+2.......(2)
Now put x=4 in eqn (2) f(4)−g(4)=10
also |f(x)−g(x)|<2 or |2x+2|<2 or |x+1|<1 or −2<x<0
Also, if f(2)=g(2) then x=−1 f(x)−g(x)=2x has no real roots