If f(x)=(h1(x)−h1(−x))(h2(x)−h2(−x))⋯(h2n+1(x)−h2n+1(−x)), where h1(x), h2(x),⋯⋯hn(x) are defined everywhere and f(200)=0, then f(x) is
many one
odd
f(−x)=(h1(−x)−h1(x))(h2(−x)−h2(x))......(h2n+1(−x)−h2n+1(x))
f(−x)=(−1)2n+1f(x)
f(x)+f(−x)=0⇒f(x) is odd
f(−200)=−f(200)=0
⇒f(x) is many one