The correct options are
A f(2)=2
B f−1(2)=2
D f′(2)=1/2
f(x)=∫xa1f(x)dx⇒f′(x)=1f(x)⋅1−0⇒f(x)f′(x)=1
⇒∫f(x)f′(x)dx=∫1dx
⇒12[f(x)]2=x+c
Now given that ∫1a[f(x)]−1dx=√2⇒f(1)=√2
⇒ From (1),12[f(1)]2=1+c⇒c=0
⇒f(x)=±√2x
But f(1)=√2⇒f(x)=√2x⇒f(2)=2
Also, f′(x)=1√2x⇒f′(2)=1/2
∫10f(x)dx=∫10√2xdx=[(2x)3/23]10=(2)3/23
Also, f−1(x)=x22⇒f−1(2)=2