If f(x)=∫5x8+7x6(x2+1+2x7)2dx , if f(0) = 0, then the value of f(1) is
−12
−14
12
14
f(x)=∫5x8+7x6x14(2+1x7+1x5)2dx =∫5x6+7x8(2+1x7+1x5)2dx Put, 2+1x7+1x5=t dt= -dx(5x6+7x8) ⇒f(x)=−dtt2=1t+c =(x72x7+x2+1)+c f(0)=0⇒c=0 ⇒f(x)=−(x72x7+x2+1)⇒f(1)=14