The correct options are
A ∫a0(f(x)+f(−x)} dx
C 0, if f is an odd function
D 2∫a0f(x) dx, if f is an even function.
We have,
∫a−af(x) dx=∫0−af(x) dx+∫a0f(x) dx ...(1]Let x=−t. Then dx=−dtAlso, x=−a⇒t=a and,x=0⇒t=0 ∴∫0−af(x) dx=∫0af(−t) (−dt)=−∫0af(−t) dt=∫a0f(−x) dxNow, (1]⇒∫a−af(x) dx=∫a0f(x) dx+∫a0f(−x) dx⇒∫a−af(x) dx=∫a0(f(x)+f(−x)} dxIf f is an even function, f(−x)=f(x) and,If f is an odd function, f(−x)=−f(x)∴∫a−af(x) dx=(2∫a0f(x) dx, if f is even0, if f is odd