If f(x) is a continuous function for all real values of x and satisfises n+1∫nf(x)dx=n22∀n∈I, then 5∫−3f(|x|)dx is equal to
A
192
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
352
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
172
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
302
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B352 I=5∫−3f(|x|)dx=3∫−3f(|x|)dx+5∫3f(|x|)dx=23∫0f(x)dx+5∫3f(x)dx⎡⎢⎣∵a∫−af(x)dx=2a∫0f(x)dx,if f(x) is even⎤⎥⎦=2⎛⎜⎝1∫0f(x)dx+2∫1f(x)dx+3∫2f(x)dx⎞⎟⎠+⎛⎜⎝4∫3f(x)dx+5∫4f(x)dx⎞⎟⎠=2(0+12+222)+(92+162)∴I=352