The correct option is A 25
Given ∫t20xf(x)=25t5.....(i)
Since, the differentiation of definite integral:
ddt[∫bah(x)]=dbdth(b)−dadth(a).....(ii)
Substitute a=0,b=t2 we get
ddt[∫t20h(x)]=dt2dth(t2)−d(0)dth(0)
Now, take h(x)=xf(x), we get
ddt[∫t20xf(x)]=2t(t2)f(t2)−0
ddt[∫t20xf(x)]=2t3f(t2)
Substitute equation(i) in above equation, we get
ddt[25t5]=2t3f(t2)
25(5t4)=2t3f(t2)
2t4=2t3f(t2)
f(t2)=t4t3
Thus, f(t2)=t
Substitute t=25
⇒f([25]2)=25
∴f(425)=25