If f(x) is a function satisfying, f(1x)+x2f(x)=0 for all non-zero x,
then evaluate ∫cscθsinθf(x)dx.
Open in App
Solution
We have, f(1x)+x2f(x)=0 ⇒f(x)=−1x2f(1x) Let I=∫cscθsinθf(x)dx =∫cscθsinθ−1x2f(1x)dx Put 1x=t ⇒−1x2dx=dt =∫sinθcscθf(t)dt =−∫cscθsinθf(t)dt=−I (Integration is independent of change of variable) ∴2I=0⟹I=0