The correct option is D 12(2e−e2−3)
f′(x)=f(x)⇒∫f′(x)f(x)dx=∫dx+C⇒ln|f(x)|=x+C⇒f(x)=aex
Given f(0)=1, we get
f(x)=ex
We know that,
f(x)+g(x)=x2⇒g(x)=x2−ex
Now,
1∫0f(x)g(x)dx=1∫0ex(x2−ex)dx=1∫0x2exdx−1∫0e2xdx=[x2ex−2xex+2ex]10−12[e2x]10=[e−2]−12[e2−1]=e−2−e22+12=e−e22−32
Hence,
1∫0f(x)g(x)dx=12(2e−e2−3)