If f(x) is a function satisfying f(x + y) = f(x)f(y) for all x, y ∈ N such that f(1) = 3 and n∑x=1f(x) = 120. Then find the value of n.
Since f(x + y) = f(x) f(y) for all x, y ∈ N, therefore for any x ∈ N
f(x) = f(x - 1 + 1) = f(x - 1) f(1)
f(x - 2) [f(1)]2 = ......... = [f(1)]x
⇒ f(x) = 3x, ( ∵ f(1) = 3)
Now n∑x=1f(x) = 120 ⇒ n∑x=1 3x = 120
⇒ 3(3n−1)3−1 = 120 ⇒ n = 4.