If f(x) is a polynomial and limt→at∫af(x)dx−(t−a)2(f(t)+f(a))(t−a)3=0 for all a, then the degree of f(x) can atmost be
Open in App
Solution
We have, limt→at∫af(x)dx−(t−a)2(f(t)+f(a))(t−a)3=0
Applying L' Hospital's rule, limt→af(t)−12(f(t)+f(a))−(t−a)2f′(t)3(t−a)2=0⇒limt→af′(t)−12f′(t)−(t−a)2f′′(t)−12f′(t)6(t−a)=0⇒limt→af′′(t)12=0⇒f′′(a)=0 for any a∴f(a) is atmost of degree 1