If f(x) is a polynomial function of the second degree such that f(−3)=6,f(0)=6 and f(2)=11, then the graph of the function f(x) cuts the ordinate x=1 at the point:
Let f(x)=ax2+bx+c
Now we have
f(−3)=6
⇒a(−3)2+(−3)b+c=6
9a−3b+c=6⟶(1)
Also we have, f(0)=6
So, a(0)+b(0)+c=6
⇒c=6⟶(2)
Also, f(2)=11
a(2)2+b(2)+c=11
4a+2b+c=11⟶(3)
So from(1)&(2) ,we get:
⇒9a−3b+6=6
⇒9a=3b,orb=3a⟶(4)
Putting equation (4) in (5) and equation (2) in (3), we get:
⇒4a+2(3a)+6=11
⇒10a+6=11ora=510or12
From (4), we have,
b=3×12=32
So, f(x)=12x2+32x+6
Now, f(x=1)=12(1)2+32(1)+6
⇒12+32+6
⇒ 8
So point of intersection of f(x) & x=1 is (1,8)