f(x)f(1x)=f(x)+f(1x)⇒f(x)f(1x)−f(x)=f(1x)⇒f(x)=f(1x)f(1x)−1 ⋯(1)
f(x)f(1x)=f(x)+f(1x)⇒f(x)f(1x)−f(1x)=f(x)⇒f(1x)=f(x)f(x)−1 ⋯(2)
Multiplying 1 and 2,
f(x)⋅f(1x)=f(x)⋅f(1x)(f(x)−1)(f(1x)−1)
⇒(f(x)−1)(f(1x)−1)=1
As x and 1x are reciprocal of each other.
So, the possible function will be,
f(x)−1=±xn⇒f(x)=1±xn⇒f(1)=1±1n=2⇒1n=1
Hence, there are infinite number of possible functions.