wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x) is a polynomial function satisfying f(x)f(1x)=f(x)+(1x) and f(3)=28, then f(4)=

A
63
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
65
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
66
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
27
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 65

solution: f(x)f(1x)=f(x)+f(1x)

f(x)[f(1x)1]=f(1x)

f(x)=f(1x)f(1x)1

Now replace x ' by1x

f(1x)=f(x)f(x)1

Multiplying equation (1) and (2)

f(x)f(1x)=f(x)f(1x){f(x)1}{f(1x)1}

{f(x)1}{f(1x)1}=1

Let f(x)1=g(x)

g(1x)=f(1x)1

g(x)g(1x)={f(x)1}{f(1x)1}

g(x)g(1x)=14 (using equation 3)
so we can say that g(x) must be a

function of type xn,

g(x)=xn

so f(x)1=xn

f(x)=xn+1

we know that f(3)=28

f(3)=3n+1

28=3n+1

n=3

so f(x)=x3+1

f(4)=43+1=65

Ansuer: option (B)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Tips for Choosing Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon