If f(x) is a quadratic polynomial with leading coefficient 1 such that limx→0f(x)=3=limx→0f′(x), then limx→2f(x)= (f′(x)=df(x)dx)
A
limx→1f(2x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
limx→−5f(x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
lim2x→−5f(2x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
13
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D13 f(x)=x2+ax+b
For the polynomial function, we can directly substitute the value of x limx→0f(x)=b=3 and limx→0f′(x)=limx→02x+a=a=3 ∴a=b=3⇒f(x)=x2+3x+3 limx→2f(x)=13 also limx→1f(2x)=f(2)=13 limx→−5f(x)=limx→−5x2+3x+3=13 and lim2x→−5f(2x)=f(−5)=13