wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x) is a twice differentiable function such that f(a)=0,f(b)=2,f(c)=1,f(d)=2,f(e)=0 when a<b<c<d<e then the minimum number of zeros of g(x)=(f(x))2+f(x)f(x) in the interval [a,e]

Open in App
Solution

g(x)=(f(x)2+f"(x)f(x))
=(f(x)2+f(x)f′′(x))
Bydifferentiatingd/dx
g(x)=ddx(f(x)f′′(x))
h(x)=(f(x)f′′(x))
f(x)hasminimumoffourzerosandf(x)hasminimumoffourzeros
h(x)=f(x)f(x)
Weknowthath(x)=0
f(x)f(x)=0
Sof(x)=4zerosandf(x)=3zeros,Sinceh(x)=7zerosandh(x)=6zeros
therefore
g(x)=h(x)




1093780_706201_ans_a09988d5e5454fda86f5e091725f55c6.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE by Factorisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon