wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x) is an even function, then prove that π/20f(cos2x)cosxdx=2π/40f(sin2x)cosxdx.

Open in App
Solution

LHS=π20f(cos2x)cosxdx......(1)
I=π20f(cos(2(π2x))cos(π22)dx
=π20f(cos(π2x))sinxdx
=π20f(cos2x)sinxdx
I=π20f(cos2x)sinxdx [f(x) is even function]
equation (1)+(2)
=2I=π20f(cos2x)(cosxsinx)dx
2I=2π20f(cosx)(12cosx12sinx)dx
=I=12π20f(cos2x)(cosxsinπ4sinxcosπ4)dx
=I=12π20f(cos2x)sin(π4x)dx
=12π20f(cos(2(π2x)))sin(π4(π2x))dx
=12π20f(cos2x)sin(π4π2+x)dx
=12π20f(cos2x)sin(π4π2)dx
I=12π20f(cos2x)sin(π4x)dx
I=12π20f(cos2x)sin(π4x)dx
I=2π40+(cos2(π4x))sin(π4(π4x))
I=2π40f(cos(π22x)sinxdx
=2π20f(sinx)sinxdx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon