LHS=∫π20f(cos2x)cosxdx......(1)I=∫π20f(cos(2(π2−x))cos(π2−2)dx
=∫π20f(cos(π−2x))sinxdx
=∫π20f(−cos2x)sinxdx
I=−∫π20f(cos2x)sinxdx [∵f(x) is even function]
equation (1)+(2)
=2I=∫π20f(cos2x)(cosx−sinx)dx
2I=√2∫π20f(cosx)(1√2cosx−1√2sinx)dx
=I=1√2∫π20f(cos2x)(cosxsinπ4−sinxcosπ4)dx
=I=1√2∫π20f(cos2x)sin(π4−x)dx
=1√2∫π20f(cos(2(π2−x)))sin(π4−(π2−x))dx
=1√2∫π20f(−cos2x)sin(π4−π2+x)dx
=1√2∫π20−f(cos2x)sin(π4−π2)dx
I=1√2∫π20f(cos2x)sin(π4−x)dx
I=1√2∫π20f(cos2x)sin(π4−x)dx
I=√2∫π40+(cos2(π4−x))∣∣∣sin(π4−(π4−x))∣∣∣
I=√2∫π40f(cos(π2−2x)sinxdx
=√2∫π20f(sinx)sinxdx